如何利用闭区间套定理来证明单调有界定理

2024-05-16

1. 如何利用闭区间套定理来证明单调有界定理

设S是有上界集合,不妨设b是的一个上界,取a∈S构造区间[a,b]。
定义性质P: 闭区间E,满足存在x1∈E,x1∈S且存在x2∈E,x2不属于S。
用二等分法构造区间套:
将[a,b]等分为两个子区间,则至少有一个具有性质P,不妨记该区间为[a1,b1],则[a1,b1]含于[a,b] 。
闭区间上连续函数的三大性质:介值定理,最大值定理,一致连续性定理,都是在他们需要出现的时候才出现,而且它们的证明都是用实数连续性定理证明的。整个体系可以用下图表示出来。


扩展资料:
闭区间套定理由于具有较好的构造性,因此在实数相关的命题中有广泛的应用,故闭区间套定理不仅有重要的理论价值,而且具有很好的应用价值。
例如用来证明单调有界定理,闭区间上的连续函数的性质(有界性、最值性、零点存在性、一致连续性等),拉格朗日中值定理等微分学上常用的定理。作为介绍,在这里给出用闭区间套定理证明单调有界定理和拉格朗日中值定理的过程。单调递增有上界,或单调递减有下界的数列必定收敛。
证明:以单调递增有上界的数列为例。设数列{xn}单调递增有上界b,如果数列从某一项开始,所有的项都等于某个常数a,那么a就是{xn}的极限。如果不是这样,即{xn}严格单调,
参考资料来源:百度百科-闭区间套定理

如何利用闭区间套定理来证明单调有界定理

2. 如何利用闭区间套定理来证明单调有界定理

设S是有上界集合,不妨设b是的一个上界,取a∈S构造区间[a,b],
定义性质P: 闭区间E,满足存在x1∈E,x1∈S且存在x2∈E,x2不属于S.
用二等分法构造区间套:
(1) 将[a,b]等分为两个子区间,则至少有一个具有性质P,不妨记该区间为[a1,b1],
则[a1,b1]含于[a,b] ;
(2) 将[a1,b1]等分为两个子区间,则至少有一个具有性质P,不妨记该区间为[a2,b2],
则[a2,b2]含于[a1,b1] ;
……
(n) 将[a(n-1),b(n-1)]等分为两个子区间,则至少有一个具有性质P,不妨记该区间为[an,bn],
则[an,bn]含于[a(n-1),b(n-1)] 
……
由此方法,构造出闭区间套{[an,bn]}
其中每个bn为S的上界.
由Cantor区间套定理知存在唯一的ξ∈[an,bn]且ξ为{bn}的一个下界,为{an}的一个上界,使得
任意ε>0,存在N>0,当n>N时,有[an,bn]含于U(ξ;ε).
故任意ε>0,存在am∈S(m>N)使得ξ-ε

3. 如何利用闭区间套定理来证明单调有界定理

设S是有上界集合,不妨设b是的一个上界,取a∈S构造区间[a,b]。
定义性质P: 闭区间E,满足存在x1∈E,x1∈S且存在x2∈E,x2不属于S。
用二等分法构造区间套:
将[a,b]等分为两个子区间,则至少有一个具有性质P,不妨记该区间为[a1,b1],则[a1,b1]含于[a,b] 。
闭区间上连续函数的三大性质:介值定理,最大值定理,一致连续性定理,都是在他们需要出现的时候才出现,而且它们的证明都是用实数连续性定理证明的。整个体系可以用下图表示出来。


扩展资料:
闭区间套定理由于具有较好的构造性,因此在实数相关的命题中有广泛的应用,故闭区间套定理不仅有重要的理论价值,而且具有很好的应用价值。
例如用来证明单调有界定理,闭区间上的连续函数的性质(有界性、最值性、零点存在性、一致连续性等),拉格朗日中值定理等微分学上常用的定理。作为介绍,在这里给出用闭区间套定理证明单调有界定理和拉格朗日中值定理的过程。单调递增有上界,或单调递减有下界的数列必定收敛。
证明:以单调递增有上界的数列为例。设数列{xn}单调递增有上界b,如果数列从某一项开始,所有的项都等于某个常数a,那么a就是{xn}的极限。如果不是这样,即{xn}严格单调,
参考资料来源:百度百科-闭区间套定理

如何利用闭区间套定理来证明单调有界定理

4. 什么是区间套定理?怎么证明?

第七章   实数的完备性
设{{an,bn}}是一个区间套,则在实数系中存在唯一的一点ξ,使得ξ∈[an,bn],n = 1,2...,即
                                        an≤ξ≤bn,n = 1,2,....
(具体证明由于有些符号打不出来,从略)
可以在网上查找相关的资料,或者去借一本《数据结构》的书,自己翻阅着看下

5. 什么是区间套定理?怎么证明?

什么是闭区间:数轴上任意两点和这两点间所有点组成的线段为一个闭区间。
闭区间套定理:有无穷个闭区间,第二个闭区间被包含在第一个区间内部,第三个被包含在第二个内部,以此类推(后一个线段会被包含在前一个线段里面),这些区间的长度组成一个无穷数列,如果数列的极限趋近于0(即这些线段的长度最终会趋近于0),则这些区间的左端点最终会趋近于右端点,即左右端点收敛于数轴上唯一一点,而且这个点是此这些区间的唯一公共点。(开区间同理)

什么是区间套定理?怎么证明?

6. 用区间套证明确界定理

证明:首先用确界定理找到一个数a,其次证明这个数a就是数列{an}的极限。
如:已知数列{an
n∈Z+}有界,根据确界定理,它存在上确界。设Sup{an
n∈Z+}=a。
由上确界的定义,任意取ε
>0,存在n∈□
则有a
-
ε<an<a.已知数列{an}单调增加,对于任意
n>N
则有a
-
ε<aN<=an<=a
或
(an-a)的绝对值<
ε,
即单调增加有界数列{an}存在极限.

7. 用区间套定理证明确界原理

区间套定理证明问题就是构造区间列去套就可以.就说一下有上界数集如何证有上确界,下界类似.
分两步,第一步套出一个数,第二步证明这个数就是上确界.
①对于数集X,如果它有上界M,就构造闭区间列U[n],U[1]=[a[1],M],a[1]是任意一个数,只要使得U[1]∩X≠∅就可以.U[2]这样构造,如果(a[1]+M)/2到M之间有X中的数,就令U[2]=[(a[1]+M)/2,M]否则等于[a[1],(a[1]+M)/2].U[3]构造类似,就是再把U[2]一分为二,右半边如果有X中的数就等于右半区间,否则等于左半区间.就这样一直构造下去,所有的U[n]都是递减区间列,根据闭区间套定理,它们必有一个公共元素m.
②要证m就是X的上确界.下面分类讨论.
1)先说如果m就是集合X中的元素,那么假设X中还有比m大的m',上述构造方法总会到最后总会有一个集合U[i]不包含m的,和m是公共元素矛盾了.这个比较好证明,就不写具体过程了.这样m在X中,而且X中还没有比m更大的数,显然m是X中的最大数,自然是上确界(根据上确界定义可知).
2)m不在X中.先证明m任意小邻域里面有X中的数.还是反证法,假设可以找到一个δ>0,使得[m-δ,m+δ]里面没有X中的数,那由于区间U[n]长度可以任意小,只要n足够大.所以总能找到一个U[j]使得U[j]长度小于δ,但所有U都包含m,于是U[j]包含于[m-δ,m+δ]中,但是[m-δ,m+δ]中没有X中元素,意思是U[j]里面就没有X中元素,和一开始约定的U[n]构造规则矛盾,所以m任意邻域都有X中数.再证X中的数不可能比m大.还是反证法,和1)完全类似,就不写了.
根据上确界的定义,m是X的上确界,就找到了.

用区间套定理证明确界原理

8. 用闭区间套定理证明下面的定理

令g(x)=f(x)-x,由题意知g(x)连续
g(a)=f(a)-a0
∴g(a)g(b)<0
∴根据零点定理可以知道存在ξ∈(a,b),使得g(ξ)=0,即 f(ξ)-ξ =0,得证。

零点定理:
设函数f(x)在[a,b]上连续,且f(a)f(b)<0,则存在ξ∈(a,b),使得f(ξ)=ξ
最新文章
热门文章
推荐阅读